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ABSTRACT

The Cauchy problem du/dt + Au + B (t,u) 3 0, u(0) = uy is studied in a
separable Hilbert space setting, when A4 is a multivalued maximal monotone
operator, and B is a multivalued operator which is measurable with respect to
the time variable and upper semi-continuous with respect to the space variable.
Under some boundedness conditions on B, an existence theorem is proved, with
the extra assumption, in the infinite dimensional case that A4 is the subdifferen-
tial of a proper lower semi-continuous inf-compact convex function. A theorem
of dependence upon the initial condition is also given.

Given a maximal monotone operator A and a multivalued upper semi-con-
tinuous operator B of a Hilbert space H, we give sufficient conditions for the
existence of solutions of the Cauchy problem:

du [dt + Au + Bu 3f'; u(0) = u,

where f'is in some I7(0, T'; H).

We use standard results on the solutions of evolution equations associated with
monotone operators in Hilbert spaces, particularly recent results of Ph. Benilan
and H. Brezis (see [1] and [5]) and obtain results closely related to those of
A. Lasota and Z. Opial [18], Ch. Castaing and M. Valadier [11], and M. Valadier
[23]. These results are related, when A is the subdifferential of a ls.c. convex
function on H, to some equations of econometrics (see C. Henry, [13] and [14]).
The first section gives preliminary results and definitions; sections two and three
deal with the finite dimensional case when B is, respectively, single-valued and
multi-valued; in section four we consider the case of a separable Hilbert space
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with some examples of application.

We are grateful to Prof. H. Brezis for his help and guidance. We are also
indebted to Prof. P. Benilan for improvements of some demonstrations and
stimulating discussions.

I. Preliminary results and definitions

Let H be a real Hilbert space, in which l . ] and (-,) are the norm and scalar
product.

1) Recall that a maximal monotone operator 4 on H is a multi-valued ap-
plication from H into H satisfying

Vix,y]ed (i=1,2) (V1= 2% — %) 20
and

RI+A)=H
We set D(4) = {xe H; Ax # &} (Domain of A). It is known that D(4) is convex.

(1.1) DepiNiTiON. Given f in L' (0, T; H), u is a strong solution of du /dt
+ Ausf whenever u is in C([0,T],H), u is absolutely continuous on every
compact subset of (0, T) (hence almost everywhere differentiable) and such that
a.e on (0,7):

u(tye D(A) and du [dt(t) + Au(t) 3 f(¢).
Recall the following two fundamental results:

(1.2) TueoreM (Benilan-Brezis, see [1] and [5]). Let H be finite dimensional,
A maximal monotone, fin LN0, T; H), uy in D(A). There exists a unique strong
solution u to the equation du [dt + Au>f with u(0) = u,. Furthermore

o) At every Lebesgue point t of f, u has a derivative from the right d*u/dt,
u(t) belongs to D(A), and d*u(t)/dt = (f(f) — Au())°.*

B) The following inequalities hold: If f (resp. g) is in L' (0, T; H) and u(resp.
v) is a corresponding strong solution, we have

O Veow= |5 SO THAD+ ) +]10)] )

where C is a constant depending only upon A (\V(o,ry is the total variation on

[0, T].

* If C is a nonempty closed convex set in H, we denote by C° the projection of O on C. If
A is maximal monotone, recall that Ax is closed convex.



Vol. 12, 1972 MULTIVALUED EVOLUTION EQUATIONS 375
(i) VO<s<t<T
t
[ u(®) — o(0)] <] u(s) - o) + f | £(0) - 9(0)|do

(i) In particular, ¥ [x,y]eAVOSs<StsT

t
[u() — x| <[ u(s) — x| +£ | f(0) — y|do

Recall that if @ is a Ls.c. proper convex function on H (i.e. with values in
(= 0, + ], and ® = + ) its subdifferential 0@ is maximal monotone (it is
defined by: z € 0®(x)<>Vye H ®(y) —@(x) Z (z,y — X)).

(1.3) THEOREM (Brezis [5] and [6]): Let H be a general real Hilbert space.
Given the subdifferential A of a proper ls.c. convex function ® on H, f in
I*(0,T; H) and uy in D—(/ﬁ, there exists a unique strong solution of du/dt
+ Auaf; u(0) = ug. In addition

o) () \[t— du|dte (0, T ; H), t->®(u(f)) is absolutely continuous on every
compact subset of (0,T], and Idu/dtl2 + d®u)/dt = (f,du[df) a.e. on (0, T).

(i) If u(0)eD@), ® =0, then du/dteI*©0,T;H), |duldt|}: < /@ @)
+ [ folf(®)]?dr] and @ (u(®)) is absolutely continuous on [0, T].

B) If® is the indicator function I, of a closed convex set C (I, =0 on C, + o
outside of C) and if feI7(0, T, H,) with 1 < p £ + oo then du/dteI?(0, T; H).
We shall denote F,(f)=u, the unique solution of du/dt + Auef; u(0) =u,
(u € D(A)). By (1.2) (ii), F,,, is continuous from L'(0, T; H) into 6([0, T]; H).

2) We recall the following definition (see [2]).

DermNiTioN. Let X and Y be two topological spaces. A multi-valued operator
B from X into Y is said to be upper semi-continuous (u.s.c.) when

— VxeX, Bx is a compact subset of Y;

— VxeX, for every neighborhood V in Y of the subset Bx of Y, there is a
neighborhood U of x in X, such that

yeU=BycV.

The domain of B is D(B) = {xeX; Bx # J}. Recall that if R(B) is compact
Hausdorff, B is u.s.c. if and only if B is closed as a subset of X x Y (closed graph
property).

3) A few notations. Let I be an interval of the type [0,T] (T < + o) or
[0, + c0). 1t will often be referred to as the time set. As usual, L%, (I; H) (resp.
L? (D)) denotes the space of H-valued (resp. R-valued) measurable functions on I
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such that their restriction to every compact subset of I is of pth power integrable
(if p = + o, then essentially bounded). We shall denote by w — I?(I; H), the
space IP(I; H) with its weak topology for finite p and with its weak-* topology
for p = + oo (i.e., for the duality with L!(I; H)).

We shall say that B(t,x) is a time dependent multi-valued operator on H
whenever for (almost) all ¢ in I, B(t, - ) is a multi-valued operator of H. Let us
end this section with the following definition:

DEFINITION. Let A be maximal monotone on H, B be a time-dependent multi-
valued operator on H, u, belong to D(4). A function u is a solution of the initial
value problem.

(P): du

—dt—+Au + B(,u)30; u(0) = uy

if and only if

— uis in €(I; H) and u(0) = u,

— u is absolutely continuous on every compact subset of interior of I (hence
almost everywhere differentiable)

— for almost all ¢ in 1, the following holds:

u(f) € D(A); %— () + Au(t) + B(t,u(®))3 0.

II. Case of B single-valued continuous

We assume in this section that H is finite dimensional. We shall prove the
following:

(2.1) THEOREM. Let A be maximal monotone on the finite dimensional
Hilbert space H. Let B be a measurable mapping from I x TA) into H, which
Jor almost all t in I is continuous on D(A) and such that there exist two functions
y and & in L}, (I) with

| B(t,%)| < 90| x| +5()

for all x in D(A) and almost all t in I. Then there exists at least one solution u
Jor (P). Furthermore, for almost all t in I, u is right-differentiable and d*u |dt
= — (B(t,u(?)) + Au())°. If B is continuous in both t and x, then for every t of
interior of I, u is right-differentiable and d*u[dt = — (B(t,u(t)) + Au(f))°.

ProoF. The proof is in three parts,
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1) We first assume I =[0,T] and y = 0. Put
G: {0, T; H) » ([0, T]; H) with G(u) = F,,( — B(,u(-)).

G is defined on E = [u € L0, T; H); u(t) € D(A) a.e. in t}. We shall prove that G
has a fixed point (which obviously will be a solution of (P)).

(2.2) PROPOSITION. G is continuous from E (with L' topology) into €([0, T]; H)
and its range is included in a compact convex set of E.

Proor of (2.2). Letu,—u in E, v, = G(u,), vi= G(u). From (1.2) (ii) we have
| vy — v] o | B(-,u,) — B(,u)| 1.

Let u, be a subsequence of u, such that u, converges to u almost everywhere on
0, 7).

B(‘,u,) converges to B(-,u) almost everywhere. Since B is dominated by &
which is in L!(0, T), we have, by Lebesgue’s theorem, that B(-,u,) converges to
B(-,u) in L' (0, T; H) so that ]vv - vloo converges to 0. This implies that the full
sequence v, converges to v in ([0, T]; H).

We use the following lemma for the result concerning the range of G.

(2.3) Lemma. F,, is a compact operator from IO, T; H) into I7(0,T; H)
for 1<p< -+ (i.e the images by F, of bounded sets are conditionally
compact sets) (in the case dim. H < «).

PROOF OF THE LEMMA. Let Sy = {feL'(0,T; H);|f | £ M}. By (1.2) iii)
with s = 0, we find a constant C,(M)such that for all fin S) | F.(f) lw < C,(M).
By (1.2) i) we find a constant C,(M) such that forall £in Sy Vo 13(F,,(/)) £ C2(M).

Then F, (Sy) < E(M) where
EM)={ue?%(0,T; H):I “l o = Ci(M), Vi) £ Co(M), u(®) e D(4)

for all ¢ in [0, T]}. By Frechet-Kolmogorov’s theorem (see [24], pp. 275-277),
E(M) is compact in I?(0,T; H) (1 £ p < + ) and is convex because D(4) is
convex. (E(M) denotes the closure of E(M) in 10, T; H).)

We now return to the proof of Theorem (2.1). Let us consider E(M) with
M =, 5] Lio.1y- 1t is a compact convex subset of L'(0, T; H) and G maps E(M)
into E(M). By Schauder’s fixed point theorem, G has a fixed point u in
EM) = €([0,T]; H).

Since ¢t — B(t,u(?)) is in L'(0, T'; H), then by Theorem (1.2), d*u [dt(t) + (Au(?)
+ B(#,u())° = 0 almost everywhere in (0, T). If B is continuous in both ¢ and x,
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then ¢t — B(t,u(?)) is continuous and d*u/dt + (Au + B(t,u(?))° = 0 for all ¢ in
(0, T). This completes the proof in the case I =[0,T], y=0.

2) We now show the existence of local solutions in the general case, using the
following result due to R. T. Rockafellar (see [20] for the proof).

(2.4) TaueoreM. If A, and A, are two maximal monotone operators on a
general real Hilbert space H and if (int D(A;)) N D(4,) is not empty, then
Ay + A, is again maximal monotone.

Let V be a bounded closed convex neighborhood of u, in H, let y, be the
indicator function of V'; then since (intV) N D(A) # &, A + 0y is maximal
monotone. We use part 1 of the proof of Theorem (2.1) to get a solution u for the

problem
du

ar + A+ oy u+ B(,u)>0; u(0) = u,
on any compact interval [0, T,] of I. Indeed for any y in D(4) NV, we have
]B(t, y), bounded by y(f) - sup {[ x] ; xeV} + (¢) which is in L1(0, T).
Since u is continuous there is a T; with 0 < T; < T, such that for every ¢ in
[0, T}), u(z) belongs to int V' ; but then we have dyv u(t) = {0} for te [0, T;). Hence
u is solution of

%l:— + Au + B(-,u)e0; u(0) = uy on [0, T)).

3) We now prove that a maximal solution of (P) is everywhere defined on I.

Let u be a maximal solution of (P), let [0, T;) be its domain; assume 7) is
finite. We shall show that lim,;7 u(f) exists; since this limit will be in D(4) it will
be possible to extend u locally to the right of T; by using step two of the proof,
thus getting a contradiction,

Put (1) = — B(t,u(t)); u is solution on [0,T;) of du/dt + Au>s f; u(0) = u,

2.5 ’ B = y(t)] u(t)l + 5(t) a.e. with y and 8 in L}(0, T)).
Using estimate (1.2) iii) we get for any [x, y] in 4:

[u@) ~x| < [uo—x] + Lt(lylﬂﬁ(a)l)da

IA

| uo — x| + fot([ y| + 8(o)do + J:y(a)lu(a)lda

IA

[uo —xl + J;t(]y] + () +|x’y(o'))da + L y(a)[ u(a)—xlda
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Clearly | ug — x| + [ y| + (o) + | x| y(@))do is bounded when ¢ tends to T;, so
l u(f) — x| £k + [op(0)] u(e) — x|do. This classically implies |u(f)— x| €
k+ [53(0)| u(0) ~ x| do < k exp ( [¢y(c)do). Hence |u(f)] is bounded when
tt T,. By (2.5) B belongs to L' (0, T;; H) so that by estimate (1.2) i):

Vio.g £ C[(L +T; + l ﬁlLi(o,n;H)) a+ SuP[o.ml “D + l ”0]2] Vte[0, Ty].

Thus u is of bounded variation as ¢t T; so that limsups‘,m[ u(s) —u(t)f=0.
Finally, this shows that lim,mu(t) exists, which completes the proof of (2.1).
Using theorem (1.3), we get the following regularity result:

(2.6) TuEOREM. Under the hypotheses of Theorem (2.1), and if A is the
subdifferential of a proper l.s.c. convex function®, y and § are in L}, (I), then the
derivative of the solution u of (P) satisfies:

\/?%GL’LC(I; H) (resp. %ELZI,,C(I; H) when u, e D(®) )

Furthermore, if ® is the indicator function ¥, of a closed convex set C of H, y
and § are in L (I), (1 £ p £ + ), then the derivative of u is in 15, (I; H).

Remark. Ifin the hypotheses of Theorem (2.1), y and § are in L}(0, + o) and

Int A-1(0)# ¢J then by the same proof as in part 3, one can prove that u(t) has
a limit as ¢ tends to infinity.

III. Case of B multi-valued upper semi-continuous
We first give the following definition:

(3.1) DeriNiTION. A multi-valued mapping B from I xm) into H will be
said to satisfy condition R, whenever

(a) for almost all ¢ of I, B(t, ) is multi-valued upper semi-continuous defined
on D(A) with non-empty convex compact values in H.

(b) forall £ in H, and all X in D(A), the function b, s t—sup {(y,£); y € B(t, x)}
is measurable on I.

(c) there exist two functions y and § in L,,.(I) such that for almost all ¢ in I, and
for all x of D(A), the following holds: sup, . .| ¥| < ¥(0| x| + 5(9.

We recall (see C. Castaing [10], corollary 6.1) that condition (b), when H is
separable, is equivalent to: '

(b") For all x in D(A4), the mapping t - B(t,x) is multi-valued measurable in
the following sense: for every closed set F of H, the set E.=[teI; B(t,x) NF # &}

is measurable in I.
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We now prove the following:

(3.2) TueoreM. Let H be a finite dimensional Hilbert space. If B satisfies
condition Ry, then problem (P) (du [dt + Au + B(-,u)e0; u(0) = u, 65(_/1—)) has
at least one solution u on I. More precisely:

i) there exists a measurable section B: I — H such that p(t) € B(t, u(t)) almost
everywhere on I,

ii) u is the strong solution of du [dt + Au + B> 0; u(0) = u,.

RemARK. Using ii) above and Theorem (1.3), one obtains regularity results
similar to those of (2.6).

The proof of Theorem (3.2) is, like that of Theorem (2.1), in three steps. We
leave it to the reader to complete the last two steps. Here is a proof of the first
step, i.e.,  =[0,T] and y = 0.

In order to use a fixed-point method in a functional framework, we introduce
the following multi-valued operator:

(3.3) DeriNiTioN. B, is defined by its graph in the following manner
[Bp—_—{[u,u]e(L"(O,T;H))Z; almost everywhere on (0, T): u(f)e D(4) and
o(t) € B(t, u(1)}

(3.4) ProPosITION. B, is demi-closed in I7(0, T; H) (i.e., its graph is closed in
Pxw—1IP) for 1 Sp= + o when H is separable.

ProoF OF (3.4). By condition R,c), B, takes its values in the set X}
= {feI’(0, T; H);| f(§)| £ 8(x) almost everywhere}.

It is clear that X} is bounded closed convex in I?(0, T'; H) so that for p # 1 it is
compact in w — IP(0, T; H). For p=1, if H is finite dimensional, applying the
Dunford-Pettis criterion of weak conditional compactness in L!(0, T) (see [12],
p. 292) we find that X} is still weakly compact.t Since IF(0, T; H) is separable
(for p # + o), the weak topology on the weakly compact set X3 of IP(0, T; H) is
metrizable (see [12], p. 434). For p = + 0, it is clear that the weak-* topology on
the weak-* compact set X; of L°(0,T; H) is metrizable since L'(0, T; H) is
separable. Thus, it is enough to show the demi-closedness of B, on sequences. The
result for p = + oo is a consequence of the result for p finite that we now show.

t This is still true when H is not finite-dimensional; see C. Castaing, Theorem 3 of Proxi-
mité et mesurabilité, un thgoréme de compacité faible, Colloque sur I'optimisation, Bruxelles
1969.
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Let u,5u, v, €B,u,and vnk-[-ipv. We can assume without loss of generality that
u, converges almost everywhere on (0,T) to u. Since v, converges weakly to v in
I?, for any integer m, we can find g, a finite convex combination of the v,’s with
n=m and such that | I — 0 | 2 £1/m (use the weakly convergent sequence
(Vp+m)wen)- The sequence g, so defined converges strongly to v in I7(0, T; H), so
that there exists a subsequence g,, which converges almost everywhere on (0, T)
to v. Thus on a set E, whose complement in (0, T) is a null set, we have for all ¢
in E:

() —— (), G H——0(t), u,VEDA), ()€ Blt,u, (1),

X —>B'Et, ;) is upper sekmzcontinuous.
Fixing ¢ in E, we shall show that »(f) belongs to B(t, u(f); this will complete the
proof of (3.4). Since B(,) is u.s.c., for every neighborhood V of B(t, u(t)) there
is a neighborhood U of u(f) such that for all x in U, B(t,x) < V. Since u,(?)
converges to u(f) there exists an N such that n = N implies v,(f) € V; thus g,(f)
belongs to the convex hull Conv V. Hence lim g, (f) belongs to Conv V for every
neighborhood V of B(t, u(t)). The latter being convex compact is the intersection
of its closed convex neighborhoods so that u(f) € B(¢, u(%)).
The question of whether B, is non-empty is answered by the following

(3.5) PrOPOSITION. B, is an upper semi-continuous multi-valued operator with
convex compact values from IP(0 T; H) intow —IP(0,T; H) for 1 £p= + o0
when H is separable. Furthermore, B u is nonempty whenever u is in I?(0, T';
H) and u(t) in D(4) a.e.

PROOF OF (3.5). It is clear that: a) B, is convex-valued since B(t,x) is so for
almost all . b) B, is weakly-conditionally-compact-valued since it takes values in
XE By (3.4) it is, in fact, weakly closed-valued so that it is weakly-compact-valued.

Since the graph of B,, is closed in I x w — I by (3.4) we conclude by (1.4) that
B, is upper semi-continuous from I*(0, T; H) into w — I*(0, T'; H).

Let u be a measurable step function on [0, T} with values x,, -, x, distinct in
D(A). Consider the multi-valued mapping I': ¢ > I'(f) = B(t, u(?)) defined (almost
everywhere) on (0, T). We show that I" is multi-valued measurable. Let E be a
closed set of H, by condition R, b’), the set E; = {t (0, T); B(t,x;) NE # J} is
measurable. This is also true of E; Nu~'(x;) and of

() E nu'x) = (10, T): B u) NE # B},
i=1
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so that I' is measurable. By theorem 5.1 of [10] due to C. Castaing, I'(f) has a
measurable section, which being dominated by 6 in I(0, T; H) is in B,u.

Now let u be in I?(0, T; H) with values in D(A) (for almost all ¢). Let u, be a
sequence of step functions with values in 5(7) converging to u in IP(0, T'; H) (for p
finite). Let v, be in B,u, (we have just shown that such v,’s exist); since v, is in
X? which is weakly compact, (v,) has weak cluster points in X7 as n tends to
infinity; by the demi-closedness of B, any such weak cluster point is in B,u which,
therefore, is not empty. The previous result for p finite obviously implies that
(3.5) holds also for p= + 0.

We now turn to some properties of the operator F, when H is finite dimensional.

(3.6) PrOPOSITION. Let A be maximal monotone on H finite dimensional, uq
in D(A), and p in [1,+ o), then F, is continuous from X f(with the w—I7(0,T;H)
topology) to L0, T; H) for all q in [1, + )

The following proof of (3.6) stems from an idea of P. Benilan. It is enough to
show the result when p = 1. We can always assume that 6 > 1 on (0, T).

71
Letf;'“)—L—-)f; u" = Fllo ' u= Fuof Fix r > 1_

Put g, =f, /7 Yand g =f“/""1; g, and g belong to L(0, T; H) and are
bounded above by & /" which belongs to (0, T).

Put v, = F, g, v = F,,g. By Theorem 1.2.iii) the u,’s are uniformely bounded
on [0, T], therefore their convergence to u in any IX(0, T; H) will be implied by
their convergence almost everywhere. We shall show that, in fact, u,(f) converges
to u(?) for all ¢ in [0, T]. Indeed, we have

|, (1) — u(®)] =] u,(t) = 0, O] +] 0,0 = 0] +| o(t) = u (D]
By (1.2), ii), one gets

t t r
| u,(t) — o] < flfn — g,|do §f 5(1 — 54M=1dg < f 5(1 — 171 dg
0 0 o
and also
T
|u(t) — v(t)] < f o1 — 5(1/r)—1)d0_-
0

Given a positive ¢, one can find r > 1 such that

T
f 5(1 — 6"~ Ydg < & (by Lebesgue’s theorem).
0
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With such an r, we have | u,(t) — u(t)| < 2&+]v,(f) — v(f)] and we now show
that v,(f) converges to v(f) for all ¢ of [0, T].

Since v, and v are locally absolutely continuous, g, — dv, /dt € A v,(t) for almost
all ¢ in [0, T]. The same holds between g and v. Applying the monotonicity of 4,
one obtains

67) 7100 =30/ £ [ 0 - 90),000) = o)
0

Put w,=v,—v. By Lemma (2.3), {w,} is conditionally compact in any I’(0, T'; H),
1 £s< + oo, in particular for 1/s 4+ 1/r=1. Hence there is a subsequence
w,, converging to a w in I}(0, T; H) and with w in L°(0, T; H) (since the w,’s are
uniformly bounded in [*(0, T; H)). We then get

760-00 5 [ G000, w,-wio + [ G0 10500 woNdo

Ll We—w

- (£(0) = £(6),8(6) " w(oY)do

= ”gn_g

Therefore, for all ¢ in [0, T,
lim |v,(t) — v(t)|? =0, since |w,, —w|L.—0,
and since e
fi,~fin w—I}0,T; H) and 3“"”~% we L*(0, T; H).

Since limy, , | w,, ()] = 0 for all ¢ in [0, T], we find that w =0 in (0, T; H).
Thus w, converges to 0 in 50, T; H) i.e., v, converges to v in I}(0, T; H). Then
using (3.7), we find that v,(r) converges to v(f) for all ¢ of [0, T]. This shows that
u,(f) converges to u(z) for all ¢ in [0, T].

REMARK. Using a demi-closedness property for (F,)~! and Lemma (2.3), one
can actually show that for p > 1, F,_is continuous from the whole of w—I7(0,T; H)
to I4(0, T; H) for all g in [1, + o0).

One can give a more precise continuity result in the following case.

(3.8) ProposiTiON. Under the asumptions of (3.6), and if D(A) is closed and
A® is bounded on every compact subset of D(A), then F,, is continuous from

X? (with the w — I2(0, T; H) topology) to 4([0, T]; H).

¥ This is true, in particular, of the case of the subdifferential of the indicator function of a
closed convex set of H.
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ProoF. As before it is enough to show this for p = 1. Let f, converge to f in
w—L'0,T; H). Put u,=F,f, and u=F,f By (1.2), iii), where x = u,(s),
y = A%u,(s) (which exists since D(4) is closed) one obtains

[~ 0,0)| 5 [ 1@~ 4w 9do for 055515 T

Since the set {u,(t); te [0, T],n e N} is bounded in D(A), it is conditionally com-
pact. Thus there exists an M such that for all te[0,T], for all neN,
| A°u,(f)| £ M. Therefore | u,(t) — u,(s)] < [#(o)do + M(t —s)for0Ss <t < T.
By Ascoli’s theorem, the family {u,} is conditionally compact in ¥([0,T]; H).
This, together with Proposition 3.6 implies that the sequence u, converges to u in
€([0, T]; H).

PrOOF OF THEOREM (3.2). (Recall that y =0 and I =[0,T].) To solve du/dt
+ Au + B(+,u)30, u(0) = uy, we interpret the problem as follows: There exists
B in B,(u) such that u = F, (— B). The classical Kakutani, Ky-Fan, Tychonof
fixed point theorem for multivalued u.s.c. mappings does not apply to the equation
ueF,(—B,u) (it is not convex valued), but as was noticed by F. Browder, it does
apply to the equation feB(F,(— B)).

Using (3.5) and (3.6), we find that § —» B, (F, (— B)) is u.s.c. from X, into itself
(X; with the w — I} topology), and nonempty convex compact valued. Thus, it
has a fixed point § which, together with u = F, (— ), satisfies the conclusions of
Theorem (3.2).

IV. Infinite dimensional case

In this section H will be a separable real Hilbert space and ¢ a proper convex
Ls.c. function on H; A = d¢.
We shall prove the following

(4.1) THEOREM. Let H be a separable real Hilbert space, ¢ be a proper L.s.c.
convex on H such that for all real M the set C(M) = {x e H;| x| £ M, ¢(x) < M}
is (convex) compact in H'. Also let B be a time dependent multivalued operator
on H satisfying condition R, (p = 2) (cf (3.1)).

Then the problem (P) has a solution u on I. More precisely:

T This is clearly equivalent to: for all Me R {xeH; ¢+ l x|2 < M} is convex compact
in H,
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i) There exists a measurable section B: I — H such that f(f) € B(t, u(t)) almost
everywhere on I.

ii) u is the strong solution of du [dt 4+ 0¢p(u) + B30, u(0) = u,. (u, e D(9)).

Proor. We first show that we can take ¢ bounded below. Indeed since ¢ is
l.s.c. proper convex on H, it is bounded below by some affine functional
(a,x) + b. If we replace ¢ by ¢ — (a,-) and B by B + a (the subdifferential of
¢ —(a,*) is d¢ — a), condition R, is still satisfied and all we have to show is
that the sets {| b ] < M, ¢(x) — (a,x) £ M} are still compact in H. But they are
closed and included in C(M(1 + l a ] )). From here on, we assume that ¢ is bounded
below on H. We use the same method as in Theorem (3.2), with y =0 and
I =1[0,T]. Thus all we have to show, in view of (3.5), is the following:

(4.2) ProrosITION. The operator F,  is continuous from X} (with w—I?
topology) to 4([0, T]; H).

Proor.! We first take ug in D(¢).

Let f,—f (in X?%) and put u,=F, f., u=F,f By Theorem (1.3), ), ii)
| du, |dt |* is bounded uniformly in n; therefore {u,} is equicontinuous on [0, T]
and uniformly bounded. Moreover, from (1.3), «), i) we also get that ¢(u, (1) is
absolutely continuous on [0,T] and (d/dt)¢(u,(t)) < (f;,(du,/dt)). Therefore,
YOSt S T d(uy(t) S () +| fy | 12| dutn/dt |12 Therefore, the set {u,(1); t€ [0, T],
ne N} is included in some C(M), which is compact. By Ascoli’s theorem, the fam-
ily {u,} is conditionally compact in €(|0,T1; H).

Let u,, converge uniformly to a cluster point v.
We have

Sl =402 [ 0@ ~F@, t0) = utode.

Letting k go to infinity we get u,, () - u(?) for all ¢ in [0, T]. Therefore v equals
u and the whole u, converges to u in ¢([0, T1; H).

Take now u, in D(¢). Let Uy be in D(¢) and converge to u,. It is enough to
show that v, , = F, .f, (resp. v, = F, ,f) converge uniformly in n to u,=F,f,
(resp. u =F, f), when m tends to infinity. By the monotony of d¢ we have
[0 m(®) = ()| | v,m(0) = u,(0)[ for all t in [0, T] (and the same for v, and u);
since v, ,(0) = v,(0) = u, ,, and u(0) = u,(0) = u,, the uniform convergence holds.

+ One can also use acompactness result; see J. L. Loins [19], pp. 141-143.
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As in Theorem (3.2), the previous result implies the existence of local solutions
in the general case of I, y £ 0. To show that a maximal solution is defined on the
whole of I, one uses the same technique as in (3.2) to show that u is bounded on
[0, T,]; then we use estimate ii) of (1.3) on [a, T,] with « > 0 (since @(u(x)) is
finite) to show that du /dt is in I*(a, T,; H), which implies the existence of a limit
for u(f) when t4 T,

For applications, the following variation of Theorem (4.1) is of interest.

(4.3) DEFINITION. A multivalued mapping B from I x D(A) into H satisfies
condition (R’) when

a) for almost all ¢ in I, the mapping x —» B(t, x) is multivalued u.s.c. from D(4)
(with the strong topology) to w — H with convex weakly compact values (w — H
is H with its weak topology).

b) for all x in D(A), the mapping ¢ — B(t, x) is multivalued measurable from I
to w—H.

c) there exist two functions y and & in L,2(I), such that for almost all ¢ in I, all
x in D(4),

sup | y| <9()] x| + 8.

yeB(1,x)

(4.4) PRrOPOSITION. Under the same assumptions on H and ¢ as in Theorem

(4.1), and if B satisfies condition (R’) (Definition (4.3)), the conclusions of Theorem
4.1) still hold.

Proor. All we have to show is that under condition (R’) and when I = [0, T]
and y = 0, the operator B = {[u,v] e (I*(0, T; H))*; almost everywhere on [0, T']
u(t) e D(4) and v(t) € B(t, u(#))} is upper semi-continuous multivalued with convex
compact images from [*(0, T; H) into w — I?(0, T; H). The proof of Proposition
(3.4) still holds verbatim, as well as Proposition (3.5) except for the fact that Bu is
nonempty when u(t) belongs to D(A) almost everywhere.

Consider a measurable step function u on [0, T] with values x, -+, x,, distinct
in D(4) and put I’ (t) = B(t,u(?)), defined (almost everywhere) on (0, 7). In fact I’
takes values in the ball of radius ] 8].®0.r) of H, and the weak topology of this
ball is metrisable (since H is separable). As in the proof of (3.5), it is easily seen
that I'" is measurable from (0, T) into that ball (with the weak topology). Hence,

T This result still holds when in condition R’c), one only assumes that y and J are in L,z,,c @.
One can notice that this modified condition R’ is weaker than R;.
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by theorem 5.1 of [10], I' has measurable sections, which obviously are in
I[X0, T; H). The proof ends as in Proposition (3.5).

(4.5) REMARK. The multivalued mapping  which maps uy (in D(¢)) into
the set of solution of problem (P) with initial condition u, is upper semi-con-
tinuous from D(¢) into w — I2(0, T; H).

PROOF. One can always restrict oneself to bounded subsets of D(¢). It is
obvious that ¥ maps bounded sets of D(¢) into bounded, hence weakly compact,
sets of L%(0,T; H).

It is now enough to show that y has the closed graph property. If u, ,, z uy and
u,, solution of du, [dt + ddu,> B,,u,(0)=u,,, with B,cBu,, converges to u in
w — I*, then the B,’s are bounded in I*(0,T; H) There exists a converging
subsequence 8, — f§ in w — . Since

| Fuo = ta] o S | FuoB = FuoBul o +| FuoBn = Fug.nBil
< , F,B - Fugﬁn,oo + l Ug — “o.n,
by (4.2), we find that u,, converges to F, f in ({0, T]; H); hence F, = u. On
the other hand, since §, — finw — I?, u,, — u in I*. By the closed graph property
of B, we see that f belongs to Bu, so thatu = F, f and e Bu.t
When B is single valued, one can transfer the compactness condition which

was so far taken on ¢, onto B itself, as in the following partial result noticed by P.
Benilan.

(4.6) THEOREM. Let H be a separable real Hilbert space, ¢ a proper ls.c.
convex function on H; let B be a single valued time dependent operator on
I x D_(q-ﬁwhich is measurable in t on I, and continuous in x from 17(% (with the
weak topology) into H (with the strong topology). Suppose there exist y and é in

LI%,(I) such that a.e. in t, for all x in D(¢),

| B(t, %) | < v(D)] x| + 6(9).
Then the problem (P)

%+a¢u + B(+,u)30; u(0) = u, (o € D(P))

has a solution.

t One can actually show that the mapping Y is us.c. from D(¢} into the space C([0, T}, H)
with the topology of uniform convergence on every compact subset of (0, T).
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PrROOF. As usual it is enough to show the existence of a solution on [0, T] for
y=0, and when ¢ is bounded below. We use a fixed point theorem for
G:u— F,(— B(,u(-)). First assume uy € D(¢). Put M = Tl 5]Lz + / é(uy) and
K, ={uc?(0,T]; w— H); u is absolutely continuous on every compact subset
of (0,T); u(0) = uo, u(t) e D(¢) a.e. and | du /dt[;2¢0,7.my< M}. K, is convex, and
by Ascoli’s theorem, conditionally compact (metrisable since all its elements have
their range in a bounded set of w— H, which is therefore metrisable) in
%([0,T]; w — H). Thus K = K, is convex compact in €([0, T]; w — H).

G is continuous on K as follows:

Let u, converge to u in K; the set {u,(f); neN, te[0,T]} is bounded hence
weakly conditionally compact in H so that B(¢, -) is uniformly continuous on it.
Therefore B(t,u,(f)) converges for all ¢ to B(t, u(t)); thus B(t,u,(t)) actually con-
verges to B(t,u(f)) in [*(0, T; H); this in turn implies the uniform convergence of
G(u,) to G(u) in %([0,T]; H). By Schauder’s fixed point theorem, there is a
solution of u = G(u).

If u, is in D($) we take u, o in D(¢) converging to u,, u, a solution of
du,/dt + 0¢(u,) + B(t,u,) €0 = u, ,. By an estimate of [5] (p. IIL. 20) we have for
all ae(0,T), for all n,

du
dt

vrm S | fl o + = fa,fn(t)’ dt + —— dist (u, 0, Ko)
J2u 70 V22
where f, = — B(-,u,) and K, = ¢~ (min ¢).

We see that the family {u,} is relatively compact in every €([«, T]; H) for
ae(0, T) (by Ascoli’s theorem) therefore, taking a sequence «, tending to 0, and
by a diagonal sequence method, we get a subsequence u,,_ which converges for all
t €(0, T). This subsequence obviously converges at ¢t = 0 too, so that it converges
for all ¢ to a function u. Since B is continuous and dominated in I?, B(-,u,,)
converges to B(-,u) in I*(0, T; H). If v = F, B(-,u), we then have ’unk - v,,m
< | tpiy0 — tto| +| B(*su,,) — B(+,u)|,: which shows that u, converges to v
uniformly on [0, T]; this shows that u = v, and u is as required.

The previous results can be applied to some multivalued partial differential
equations. Here are two examples.

We take H = I[*(Q) where Q is an open bounded subset of R”, with a smooth
boundary I'. Let j be a positive proper l.s.c. convex function on R such that
0,(0)# J. We set
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+ oo otherwise

{% f | gradu|?dx + f jwdx if ueHy(Q), j(u) e L'(Q)
Pu) = ° ?

Then, (see [4])
0p(u)= — Au + 0j(u) with

D(0¢) = {ue HX(Q) N H(Q): there exists g € [*(Q) with g(x) € dju(x) a.e. on Q}

D(@¢) = D(¢p) = {u e I*(Q); u(x)eD(j) a.e. on Q}.
It easy to see that, for all M, the set
{ueIX(Q); ¢(u)+|ul52 < M} is bounded

in H(Q) and thus compact in [*(Q).

1) Let f(t, y) be a bounded continuous function on [0, T] x D(j). Let u, be in
I2(Q), with u,(x) € D(j) a.e. on Q. Then, there exists a function u in ([0, T];
I2(Q)) with \/t du/dteI? (0,T;I*(Q)) satisfying

%z:_ (t,x) — Au(t,x) + 0j(u(t, x)) 3 f(t, u(t, x)) for almost all (¢,x) in (0, T) x Q

u(0,x) = uy(x) on Q
u(t,x)r =0a.e. on (0, T).

2) Let c(t,y) (resp. d(t,y)) be continuous in t and Ls.c. (resp. u.s.c.) in y on
[0, T] x D(j) with ¢ and 4 bounded and

c(t,y) £ d(t,y).
Let u, be in IX(Q) with values in D(j). There exists u in €([0, T]; L*(Q)) and
he L*((0, T); [*(Q)) with

%:_ (t, X) - Axu(t, X) + aj(u(t, X)) 3 k(f, X)

c(t,u(t,x)) = h(t,x) < d(t,u(t,x)) a.e. on (0,T) X Q
u(0,x) = uy(x) on Q
u(t,x);r =0 a.e. on (0, 7).

RemARK. One can easily transpose the above examples to get a Neumann
boundary condition instead of the Dirichlet one.
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